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1. Introduction

Partition functions over supersymmetric states Zbps, are fascinating objects from which we

can extract key information on the corresponding supersymmetric theory, like for example

the real number of independent degrees of freedom and the structure of the vacua moduli

space. They provide a handle to study extensive properties of the theory including the

description of the possible different phases, the order of their transitions, etc.

In general, the calculation of Zbps is not an easy task. If the theory happens to be

strongly coupled, things get worse, since not even perturbative approaches can be applied.

In the above cases, we may try to calculate other type of objects that hopefully are somehow

similar to the unknown partition function. Among these objects we have the so-called

Indices of the theory. Their construction is based on representation theory such that, they

are by definition invariants of the couplings. Basically, the indices count (modulo some

weights) the number of short representations (or BPS rep.), that do not contribute to long

representations (general rep.) as the coupling changes. These objects are more easy to

calculate, and in certain cases, they are a good approximation to Zbps provided there are

no strong cancellations on the characteristic sum within the index.

With the new models of Bagger and Lambert [1], Gustavssom [2] and more recently

with the ABJM proposal [3], there has been a revival on the research of the M2/M5-brane

world-volume superconformal field theories (SCFT). Unfortunately, up to date, we are not

able to calculate the corresponding supersymmetric Zbps, although there are some partial

results and vigorous programs currently under development (see [4] and references there

in). On the other hand, there is a proposal for the most general super-conformal Index in

four, three, five and six dimensions [5, 6]. This Indices have been applied to the specific
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superconformal theories of N = 4 SU(N) SYM in 4D and to the N = 6 U(N) × U(N)

k-level Chern-Simon theory of the ABJM proposal, corresponding to D3 and M2 brane

respectively [5, 7].

In the above works, it was found that the index calculated over multiple supergraviton

representation of AdS5/4 matches exactly the Index calculated on the dual D3/M2 SCFT.

This result is then interpreted as a non trivial check or support to the AdS/CFT duality in

each case. A less fortunate result of these Indices is its relation with the corresponding Zbps.

It is a fact that these indices show no phase transitions as functions of the different fugacities

(or chemical potentials) and therefore do not capture (at least one of the more important

features), the associated supersymmetric partition function Zbps. Another perspective on

this same result comes from the point of view of the dual gravity theory, where these indices

are blind to Black Hole (BH) physics.

The main idea of this work, is to obtain the supersymmetric partition function Zbps in

the large N limit of the M2/M5 world-volume SCFT. This is achieved, studying M-theory

supergravity configurations and the relevant AdS/CFT duality. To be more precise, we

calculate the supergravity partition function using a saddle point approximation on super-

symmetric BH solutions such that Zbps = e−Ibps . Then, based on the above duality, this

object reproduce the corresponding superconformal partition function of the dual theory

in the large N limit. We work with supersymmetric M-theory BHs that are asymptotically

AdSnxS11−n, n = 4, 7, leaving other types of asymptotic behavior for future research.1

To define the supergravity partition function on BPS BH solutions, we need to calcu-

late the supersymmetric Euclidean action Ibps, in any of the following ensembles; Micro

canonical, Canonical or Grand canonical. We define Ibps as the supersymmetric limit of

the Euclidean action calculated on non-extremal BHs, in the Grand canonical ensemble.

This approach was defined in [8, 9], and not only provides a natural connection between

SCFT BPS statistical mechanics and BPS Euclidean methods in supergravity, but also

makes connection with the attractor mechanism and the entropy function of Sen [10].

Let us summarize the main result of this work. We have been able to compute the par-

tition function over supersymmetric states corresponding to the known BPS BH in AdS4/7

preserving only two real supercharges. Our Zbps, shows phase transitions as function of

the different supersymmetric chemical potentials or fugacities, contrary to the behavior of

known Indices. We found small/big BHs associated to these phase transitions, where small

BHs are unstable while big BHs are stable. We also report on a peculiar relation between

the partition function Zbps and the associated Index. In short, both objects come equipped

with the same constraint among its fugacities (that also can be read as a constraint among

its charges). Presently, we do not understand this issue, but we believe it should play an

important role with deep implications to the understanding of superconformal partition

function of the world-volume theory of the M2/M5-brane.

1The case of BH in asymptotically AdSnxS7/Zk space is of particular interest due to its direct relation

to the ABJM proposal.
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1.1 BPS euclidean actions

In field theory, to define the supersymmetric limit of given partition function, at some

point, we have to use that all supersymmetric states saturate a BPS inequality. This

equality translates into constraints between the different labeling charges of the associated

Hilbert space. To illustrate a general procedure to calculate Zbps, let us consider a simple

example a Hilbert space characterized by only two labels, say energy E and charge Q. We

take the BPS bound E = Q.2 The Grand canonical partition function Z is a function

of two potentials (β,Ω) conjugated to (E,Q) respectively. Define then, the left and right

variables E± = 1
2(E ±Q), β± = β(1± Ω) such that,

Z(β,Ω) =
∑

e−βE+βΩQ =
∑

e−β
−

E+−β+E
− . (1.1)

The supersymmetric partition function is obtained taking the limit β+ → ∞ while

β− → ξ (constant). The above limiting procedure takes T = 1/β to zero, while Ω goes to

Ω = 1 − ξT + O(T 2). Where the new supersymmetric conjugated variable ξ corresponds

to the next to leading order in T . Note that among all available states, only those that

satisfy the BPS bound are not suppressed in the sum, giving the resulting supersymmetric

partition function

Zbps =
∑

bps

e−ξQ =
∑

Q

dQe−ξQ =
∑

E

e−ξEeS(E), (1.2)

where the first sum is over all supersymmetric states (bps) with E = J , in the second sum

we have isolated the multiplicity at each Q as dQ and in the third we solved for E with S

equal to the usual entropy.

This limiting procedure can be implemented on supergravity BH solutions, by con-

sidering a careful near-to-BPS expansion of the usual Euclidean Action, potentials and

charges (the detail explanation and examples can be found in [8, 9]). From the above

limiting procedure we are able to define the Euclidean action for BPS BH as a function of

the different fugacities ωi conjugated to the conserved charges pi. Therefore we can write

Zbps = e−Ibps , Ibps =
∑

ωip
i − S(pi) , i = 1, 2, . . . (1.3)

where Zbps stands for the saddle point approximation of the supergravity partition function.

There is another method to calculate the same quantities, using the entropy function of Sen

calculated in the near-horizon of the BPS BH. In this case, the different electric charges

correspond to the fugacities, while the function f (Legendre transformed of the entropy

function on-shell) is the Euclidean action (see [10] for details).

2. M-theory Black holes

The low energy effective theory of M-theory is conjecture to be N = 1 11D supergravity.

The relevant set up to consider the AdS/CFT duality is to fix boundary conditions such

2This type of BPS bound appears in two dimensional supersymmetric models like, e.g., the effective

theory of 1/2 BPS chiral primaries of N = 4 SYM in R ⊗ S3 (see [11 – 14]).
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that the asymptotic behavior on each solution is AdSdxS11−d with d = 3, 7, corresponding

to UV regime in the near-horizon limit of N M2-branes and M5-branes respectively. In this

framework, M-theory can be consistently truncated to simple theories, corresponding to

the compactification on S11−d, defining d-dimensional gauge supergravity with R-symmetry

group SO(12−d). This theory can be further truncated to the maximal abelian subalgebra

of the R-symmetry, corresponding to U(1)m gauge supergravity, where m = [13 − d/2].

Finally, we can always identify all the U(1) R-charges to get the so called minimal models.

Therefore, M-theory BH solutions can appear at all the above different levels of truncations.

Presently, BPS BHs are known only at the last two levels and it is not clear how generic

these solutions are (see [15] for a study on almost all known solutions).

To calculate the supergravity Euclidean action Ibps on BPS BH, as a function of the

different fugacities (ω, φ, . . .) in the Grand canonical ensemble, we follow the procedure

introduce in our previous discussions of supersymmetric limits in statistical mechanics.

We take the relevant thermodynamic quantities of our family of non-extremal BHs, and

study the leading and next-to-leading behavior in a near BPS expansion i.e. as β →∞. It

is a non-trivial fact that we get the following relations,

E → Ebps + O(β−2) , J → Jbps + O(β−2) ,

Q→ Qbps + O(β−2) , S → Sbps + O(β−1) (2.1)

while

Ω→ Ωbps −
w

β
+ O(β−2) ,

Φ→ Φbps −
φ

β
+ O(β−2) . (2.2)

Where the ”bps” subscript defines the corresponding supersymmetric values of generic an-

gular momentum J and electric charge Q, while the next-to-leading terms in the conjugated

chemical potentials, define the supersymmetric fugacities.

2.1 M2 case: BPS black holes in AdS4xS7

BPS BHs in asymptotic AdS4xS7 space-time, are electrically charged, rotating extremal

solutions of N = 1 11D supergravity. They are conjecture to be dual to BPS ensembles of

the three dimensional N = 8 SCFT on the world-volume N M2-branes, at large N . BPS

BHs are label by the maximal compact subgroups of the asymptotic isometry group, and

therefore are label by it energy E, 4d-angular momentum J and four U(1) R-charges Qi

i = 1, . . . , 4. Notice that this is precisely the set of labels used to characterize the dual

states in the SCFT.

Non-extremal BH solutions of N = 8 SO(8) gauge supergravity truncated to its max-

imal abelian subalgebra, where found in [16, 17], while its supersymmetric limits and

thermodynamics are review in [15]. On these BHs there is an extra parameter labeling

the magnetic charge, that is zero in the BPS case. The BPS case only conserves two real

supercharges. For simplicity, we only work explicitly the minimal case where all R-charges

set equal. Nevertheless, our result are easily generalized to the U(1)4 case.

– 4 –
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In the minimal case, the non-extremal electrically charge rotating BH solution comes

as a function of three parameter (m,a, q).3 The thermodynamic potentials are,

β =
4π(r2

+ − a2)

r+[1 + a2 + 3r +2 −(a2 + q2)/r2
+]

,

Ω =
a(1 + r2

+)

(r2
+ + a2)

, Φ =
qr+

(r2
+ + a2)

, (2.3)

where r+ is a function of (m,a, q) corresponding to the radial position of the outer horizon.

The three different charges and entropy S are

E =
m

(1− a2)2
, J =

am

(1− a2)2
,

Q =
q

4(12 − a2)
, S =

π(r2
+ + a2)

1− a2
(2.4)

while the corresponding Euclidean can be written as

I = β E − β Ω J + 4β Φ Q− S(E, J,Q) . (2.5)

The extremal BH in the BPS regime is obtained imposing the BPS constrain

E = J + 4Q , (2.6)

together with the requirement that no closed time-like (CTC) curves are found outside

the horizon (see [15] for details). This last two conditions, reduce the total number of

independent degree of freedom to only one.

If we oxidate the BPS BH to 11D, using co-ordinates that are asymptotically static

to AdS4xS7, the solution rotates in both factors, AdS4 and S7, in all possible directions,

with velocities equal to the velocity of light, i.e. Ωbps = 1,Φbps = 1.

To obtain the correct expressions for the BPS partition function and to define the

different chemical potentials, we have to calculate the leading and next to leading term in

a near BPS expansion on the above family of non-extremal BHs. To do this, we chose a

off-BPS parameter µ such that,

m2 = a(1 + a)4 + µ , q =
√

a(1 + a) (2.7)

where µ = 0 reproduces the BPS BH. The corresponding expansion of the charges and

entropy in terms of µ gives

E =

√
a

(1− a)2
+ O(µ) , J =

√
aa

(1− a)2
+ O(µ) ,

Q =

√
a

4(1− a)
+ O(µ) , S =

πa

(1− a)
+ O(

√
µ) , (2.8)

3here we follow the conventions of [17] with AdS4 radius set equal to 1.
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while the expansion of its conjugated potentials gives;

β =

√
2πa3/4(1− a)√
a2 + 6a + 1

1√
µ

+ O(0) ,

Ω = 1− 2
√

2(1− a)

a1/3
√

a2 + 6a + 1

√
µ + O(µ) ,

Φ = 1−
√

2(1− a)

a1/3
√

a2 + 6a + 1

√
µ + O(µ) . (2.9)

From the above expansion, using eq. (2.2), we can read off the parametric form of the BPS

charges, entropy and fugacities,

Jbps =

√
aa

(1 − a)2
, ω =

4π
√

a(1− a)2

(1 + a)
√

a2 + 6a + 1
,

Qbps =

√
a

4(1 − a)
, φ =

2π
√

a(1− a)2

(1 + a)
√

a2 + 6a + 1
,

Ebps =

√
a

(1 − a)2
, Sbps =

πa

(1− a)
, (2.10)

that allows us to write the Euclidean action as a function of (ω, φ) as follows,

Ibps = ωJbps + 4φQbps − Sbps . (2.11)

Finally we can use the BPS equation (2.6), to rewrite Ibps in terms of the fugacities

related to (E,Q) as follows,

Ibps = ξ Ebps − 4µ Qbps − Sbps, , (2.12)

with ξ = ω , µ = ω − φ.

2.1.1 M2 Phase transitions, stable/unstable Bh and constraints

The Euclidean action for the M2-BH written in terms of the parameter a is given by the

expression

Ibps =
πa(a2 + 8a− 1)

(a− 1)(a2 + 6a + 1)
, (2.13)

where a runs on the interval (0, 1) and the BH radius is r =
√

a. The above is our

working expression summarizing our results for the Euclidean action in the Grand canonical

ensemble of BPS BHs.

The corresponding partition function shows a clear phase transition between two phases

(see fig 1). These non-coexisting phases should correspond to a sea of supergravitons in

AdS4 and a BH in AdS4. In terms of the SCFT degrees of freedom, both phases are very

different, since the action scales like N3/2 in the BH phase in contrast to the scale N0

characteristic of the AdS phase. The phase transition is of first order as can be seen from

the calculation of the different susceptibilities.

The role of the unstable BPS BHs in the AdS phase is similar to the that of small

BHs at finite temperature in AdS. They are unstable saddle points of the Euclidean action,

– 6 –
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Figure 1: Plot of the Euclidean action of the BPS BH as a function of the BH radius.

0.2 0.4 0.6 0.8 1.0
r

0.5

1.0

1.5

Figure 2: Plot of the fugacity ξ as a function of the BH radius. It can be seen that given one

value of ξ there correspond two solutions for the BH radius r, a small and big BH respectively.

and should therefore be dual to unstable configurations in the SCFT (see [18] for a similar

phenomenology on the D3-brane case.). To better illustrate this point, let us plot in

figure (2) the fugacity ξ (potential conjugated to the Energy) as a function of r. We

can indeed see, that ξ is double value showing two branches. The first/second branch

corresponds to small/big BHs. Small BHs are found between the origin and the maximum

value of ξ, while big BHs are found from this maximum until the end.

As a last comment, it is important to stress that these BPS BHs are constraint sys-

tems. There is only one free degree of freedom (that we parameterized with a), while in

principle, from naive expatiations on the dual SCFT there should be two. Recalled that

our BH solutions are labeled by three charges (E, J,Q), that we have the BPS constraint

of eq. (2.6) and a causality constraint to eliminate CTC. This last extra constraint adopts

a complicated form in terms of the BH charges (we give it implicitly in eq. (2.7)), but is

particularly simple when written in terms of the conjugated fugacities, giving

ξ = 2µ equivalent to ω = 2φ . (2.14)

We will come back to this issue when discussing the SCFT partition function and its Index

in section 3.

– 7 –
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2.2 M5 case: BPS black holes in AdS7xS4

BPS BHs in asymptotic AdS7xS4 space-time, are electrically charged, rotating extremal

solutions of N = 1 11D supergravity. They are conjecture to be dual to BPS ensembles

of the six dimensional N = (2, 0) SCFT on the world-volume N M5-branes, at large N .

BPS BHs are label by the maximal compact subgroups of the asymptotic isometry group,

and therefore are label by it energy E, three 7d-angular momenta JI I = 1, 2, 3 and two

U(1) R-charges Qi i = 1, 2. Again, this is precisely the set of labels used to characterize

the dual states in the SCFT.

Non-extremal BH solutions of N = 4 SO(5) gauge supergravity truncated to its maxi-

mal abelian subalgebra, where found in [19, 20] and its supersymmetric limits and thermo-

dynamics are review in [15, 20]. The general non-extremal BH solution depending on all

six charges in not known, where the known solution have either same angular momenta and

different electric charges [19], or same electric charges and unequal angular momenta [20].

For simplicity, we only work out the minimal case, where all R-charges are set equal to Q

and all the angular momenta are set equal J . Nevertheless, our result are easily generalized

to the other available cases. All known BPS cases only conserve two real supercharges.

In this minimal case, the non-extremal electrically charge rotating BH solution comes

as a function of three parameter (m,a, d).4 The thermodynamic potentials are,

β =
2πr+[(r2

+ + a2)3 + q(r2
+ − a3)]

−q2 + 3r2
+(1 + r2

+)(a2 + r2
+)2 − (a2 + r2

+)3 + 2q(a3 + r4
+)

,

Ω =
a[(r2

+ + a2)2(1 + r2
+) + q(r2

+ − a)]

(r2
+ + a2)3 + q(r2

+ − a3)
,

Φ =
π2 cosh(d) sinh(d)

(1− a2)3
, (2.15)

where q = 2m sinh(d)2 and r+ is a function of (m,a, d) corresponding to the position of

the outer horizon. The three different charges and entropy S are

E =
mπ2[−5− a2 + (−8 + 11a2 + 12a3 + 3a4) sinh(d)2]

8(1 − a2)4
,

J =
amπ2(− cosh(d)2 + a(1 + a)2 sinh(d)2)

(1− a2)3
,

Q =
πm sinh(d) cosh(d)

2(1− a2)3
,

S =
π3[(a2 + r2

+)3 + q(ro2 − a3))

4(1 − a2)3r+
. (2.16)

Then, in the Grand canonical ensemble the Euclidean action I can be written as

I = β E − 3β Ω J − 2β Φ Q− S(E, J,Q) . (2.17)

In the above conventions, supersymmetric BHs are obtained imposing the

BPS constrain

E + 3J − 2Q = 0 , (2.18)

4here we follow the conventions of [20] with AdS7 radius set equal to 1.
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together with the requirement that no closed time-like curves (CTC) are found outside

the horizon (see [15] for details). This last two conditions, reduce the total number of

independent degree of freedom to only one. As in the M2 case, the oxidated BPS BH in

11D (in co-ordinates that are asymptotically static to AdS7xS4), is rotating in both factors,

AdS7 and S4, with velocities equal to the velocity of light, i.e. |Ωbps| = 1, Φbps = 1.

To obtain the corresponding BPS partition function, we calculate the leading and next

to leading term in a near BPS expansion on the family of non-extremal BHs. The off-BPS

parameter is µ such that,

m =
3qa(3a − 2)

2
+ µ , q =

8a3(a− 1)3

(1− 3a)2
(2.19)

where µ = 0 reproduces the BPS BH. The corresponding expansion of the charges and

entropy in terms of µ gives

E =
π2a3(−4 + 11a− 6a2 + 3a3)

(1 + a)4(1− 3a)2
+ O(µ) ,

J = −π2a4(1− 6a + a2)

(1 + a)4(1− 3a)2
+ O(µ) ,

Q =
2π2a3

(1 + a)3(3a− 1)
+ O(µ) ,

S =
2π3a4

√
3− a

(1 + a)3
√

(1− 3a)3
+ O(

√
µ) , (2.20)

while the expansion of its conjugated potentials gives;

β =
π[(r2

+ + a2)3 + q(r2
+ − a3)]

Br+[2q + 3(a2 + r2
+)(1 + a2 + 2r2

+)]

1√
µ

+ O(0) ,

Φ = 1− Ba2[(r2
+ + a2)(a2 − 2r2

+) + qa]

r2
+[(r2

+ + a2)3 − q(r+2− a3)]

√
µ + O(µ) ,

Ω = −1 +
B(1 + a)(a4 + 2a3 + 4a2r2

+ + 2ar2
+ + 3r2

+ + q)

[(r2
+ + a2)3 − q(r+2− a3)]

√
µ + O(µ) . (2.21)

Where r2
+ = a2(3− a)/(1 − 3a) is the BPS BH radius and B a polynomial in a. From the

above expansion, using eq. (2.2), we can read-off the parametric form of the BPS charges,

entropy and fugacities

Ebps =
π2a3(−4 + 11a− 6a2 + 3a3)

(1 + a)4(1− 3a)2
, Sbps =

2π3a4
√

3− a

(1 + a)3
√

(1− 3a)3
,

Jbps = −π2a4(1− 6a + a2)

(1 + a)4(1− 3a)2
, ω =

−8πa2(1 + a)
√

1− 3a
√

(3− a)a2[3 + a(19a − 10)]
,

Qbps =
2π2a3

(1 + a)3(3a− 1)
, φ =

6πa2(1 + a)
√

1− 3a
√

(3− a)a2[3 + a(19a − 10)]
. (2.22)

These expressions allow us to write the Grand canonical Euclidean action,

Ibps = 3ωJbps + 2φQbps − Sbps , (2.23)

– 9 –
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Figure 3: Plot of the Euclidean action of the BPS BH as a function of the parameter −a.

as a function of (ω, φ) only. As we proceeded in the M2 case, we use the BPS equa-

tion (2.18), to rewrite Ibps in terms of the fugacities related to (E,Q) as follows,

Ibps = ξ Ebps − 2µ Qbps − Sbps , (2.24)

with ξ = −ω , µ = −(ω + φ).

2.2.1 M5 Phase transitions, stable/unstable BH and constraints

The parametric form of the Euclidean action for the M5-BH is

Ibps =
2π3a5{−3 + a[3 + (31 − 7a)a]}

√
1− 3a

(1− 3a)2(1 + a)3(3 + a(−10 + 19a))
√

((3− a)a2
, (2.25)

where a runs on (−1, 0). This is our final expression for the Euclidean action in the Grand

canonical ensemble for the BPS BHs.

As in the M2 case, the corresponding partition function shows a phase transition

between two phases (see fig 3). These non-coexisting phases should correspond to a sea

of supergravitons in AdS7 and a BH in AdS7. In terms of the SCFT degrees of freedom,

the action scales like N3 in the BH phase in contrast to the scale N0 characteristic of the

AdS phase. The phase transition is of first order as can be seen from the calculation of the

different susceptibilities.

We have the same situation as in the M2-BH, where the unstable BPS BHs (small

BHs) in the AdS phase corresponds to unstable saddle points of the Euclidean action, and

should therefore be dual to unstable configurations in the SCFT. In figure 4, the potential

conjugated to the Energy ξ is ploted as a function of a. Here it can be seen that it is double

valued function of a, showing two branches of small/big BHs. Small BHs are found between

the origin and the maximum value of ξ, while big BHs are found from this maximum until

the end. To closed this section, this system also shows an extra constraint over the BPS

relation of (2.18). There is only one free degree of freedom (that we parameterized with

the letter a), while in principle, from naive expatiations on the dual SCFT there should

be two. This extra constraint adopts a complicated form in terms of the BH charges (we
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Figure 4: Plot of the fugacity ξ as a function of -a. Given one value of ξ there correspond two

different BHs, with different radius; small and big BHs.

give it implicitly in eq. (2.19)), but is particularly simple when written in terms of the

conjugated fugacities, giving

ξ = 4µ equivalent to ω =
4

3
φ . (2.26)

In the next section, we will elaborate on this and the M2-BH constraint of equation (2.14)

showing its coincidence with the constraint that characterized the most general index of

these SCFT.

3. Indices and partition functions

The field theory calculation of the M2/M5 SCFT partition functions in the large N limit

are unknown. Our incomplete understanding is due to the fact that we do not have a

good description of the world-volume theory of multiple M2/M5. Even in the case of

the ABJM proposal, where there is a candidate for the SCFT at level k the calculation

is presently out of our possibilities (see [4] for results on this direction.). Nevertheless at

least formally, it should be a function of all the potentials conjugated to the charges that

label our supersymmetric states in the ensemble.

The situation is better when considering supersymmetric Witten indices. In [5, 6],

it was possible to define and to give a prescription of how to calculate the most general

Witten Index Iw for SCFT in D = 3, 4, 5, 6. This Index has already been computed in the

AdS/CFT framework, showing perfect agreement on both sides of the duality [5, 7] for the

cases where we have a realization the SCFT.

To define the most general Iw in SCFT, we first choose an arbitrary conjugated pair

of supersymmetric generators (Q,S), that define the unbroken supersymmetries of our

BPS ensembles of states. Then, the index is written as a weighted sum over the Hilbert

subspace of states that are annihilated by (Q,S). Since all our BPS states transform in an

irreducible representation of the subalgebra of the superconformal algebra that commutes

with our chosen pair (Q,S), it is clear that this maximal commuting subalgebra (MCS)
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plays a key role in the definition of Iw. The corresponding trace formula for Iw is

Iw = TrH [(−1)F exp(−β{Q,S} + G)] , (3.1)

where we traced over the full Hilbert space H, F is the Fermion number operator, G is an

element of MCS.

The resulting index is independent of β and is therefore label by elements of the MCS

only (see [6] for a detail explanation on all the above). Due to this last point, Iw is in

general a function of less parameters than the one needed to label a BPS state and therefore

is defined as a constrained function on the general phase space of the theory.

In the following, we will extract these constraints in terms of the natural fugacities

conjugated to the labeling charges of our BPS states. We work this out for the particular

cases of the 3D SCFT with R-symmetry SO(8) and for the 6D SCFT with R-symmetry

Sp(4). The resulting constraints should corresponds to the M2/M5-SCFT constraints that

takes place in the definition of Iw.

For the large N limit case of N M2-branes, Iw can be calculated over multi-gravitons

states in AdS4xS7. In this situation, we first calculate the index over each graviton rep-

resentation Isp, to then sum over all single gravitons and multi-gravitons.5 The index on

each graviton rep. goes as

IRn = Trbps

[

(−1)F exp

(

− ρE +

3
∑

i=1

γiH
i

)

]

, (3.2)

where (E,H i) are the Cartan charges of the bosonic subgroup SO(2, 1)xSO(6) of the MCS.

Its relation to the full set of superconformal Cartan charges (e, j, hi) is

E = e + j , H i = hi+1 (3.3)

where i runs over 2, 3, 4 and (e, j, hi) stands for energy, angular momentum and R-charge

respectively. The BPS constraint in these conventions turns out to be

e− j − h1 = 0 . (3.4)

To find the form of the constraint among the different fugacities, we write

ηj +

4
∑

i=1

λih
i = −ρE +

3
∑

i=1

γiH
i (3.5)

from which we get, after using the above BPS relation; ρ = −λ1, γi = λi+1 for i = 1, 2, 3

and η − λ1 = −ρ. That allow us to find the corresponding constraint appearing in Iw,

2η − γ1 = 0 . (3.6)

Rewriting the above constrain in terms of the U(1)4 gauge supergravity in 4D of previous

sections, gives

2ω − 1

4

4
∑

i=1

φi = 0 , (3.7)

5We basically follow the notation of [6].
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that in the case of equally R-charged ensemble (i.e. φi = φ for all i), gives

2ω = φ ←→ ξ = 2µ . (3.8)

Where in the last expression, we have used the fugacities of eq. (2.12). Therefore, we have

found that:

The constraint appearing in the Witten index of our

M2-SCFT at large N is exactly the same constraint

that appears in known M2-BHs.

For the M5 case, we proceed in a similar fashion. First we write the corresponding

trace formula for IRn in AdS7xS4,

IRn = Trbps

[

(−1)F e(−ρE+
P

i=1,2 γiHi+ζK1)
]

, (3.9)

where (E,H1,H2,K1) are the Cartan charges of the bosonic subgroup SO(5, 1)xSp(2) of

the MCS. Its relation to the full set of superconformal Cartan charges (e, hI , k0, k1) with

I = 1, 2, 3 is

E = 3e + h1 + h2 − h3 , H1 = h1 − h2 ,

H1 = h2 + h3 , K1 = k1 , (3.10)

where (e, hI , k0, k1) are respectively energy, angular momenta and R-charges. The BPS

constraint in these conventions turns out to be

e− h1 − h2 + h3 − 4k0 = 0 . (3.11)

To find the form of the constraint among the different fugacities, we write

3
∑

I=1

ηIh
I +

∑

i=0,1

λik
i = −ρE +

∑

l=1,2

γlH
l + ζK1 . (3.12)

From the above equation and the BPS relation, we get that the constraint in this case is

η1 + η2 − η3 − γ0 = 0 . (3.13)

Rewriting the above constrain in terms of the U(1)2 gauge supergravity in 7D of previous

sections, gives
3

∑

I=1

ωI +
1

2

2
∑

i=1

φi = 0 . (3.14)

In the case of equal angular momenta and equal R-charge (i.e. ωI = ω and φi = φ for all

I, i), the constraint reduces to

3ω − 4φ = 0 ←→ ξ = 4µ , (3.15)

where in the last expression we have used the fugacities of eq. (2.24). Therefore we have

found that:

The constraint appearing in the definition of the Wit-

ten index of the M5-SCFT at large N , is the same

constraints that appears in known M5-BHs.
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4. Discussion

In this work, we have used the AdS/CFT duality to define the supersymmetric partition

function of the M2/M5 SCFT at large N , Zbps preserving only two supersymmetries. We

have calculated the M-theory supergravity partition function as a saddle point approxima-

tion on supersymmetric BH. In turns, to calculate this supergravity partition function, we

need the Euclidean action on these BPS BHs, as a function of all the fugacities conjugated

to all the different charges that label our BPS states.

The Euclidean action on the BPS BHs is defined as the supersymmetric limit of the

Euclidean action of non-extremal BHs in M-theory [8, 9]. There is another method, base on

the attractor mechanism and Sen’s entropy function, which is equivalent as shown in [10].

Our result are summarized by eqs. (2.10), (2.12) for the M2-case, and eqs. (2.22), (2.24)

for the M5-case. The resulting partition functions show clear phase transitions as a function

of the fugacities. In the AdS phase we found the existence of small BHs that are unstable,

representing local maximums of the Euclidean action and therefore should be dual to

unstable configurations in the SCFT (see [18] for similar but different behavior in the finite

temperature for the case D3-branes.).

We also found that all known BPS BHs in M-theory are constraint, and that these

constraints are found in the definition of the most general Witten Index Iw of the corre-

sponding SCFT. These constraints are given in eq. (3.7), (3.14) for the M2 and M5 cases

respectively. The above observation is an intriguing fact, since our BHs should be related

to the dual partition function and a priory; there is no reason for this relation with the

Index. We believe that there is a deep reason for the above relation, that should have

consequences in the desiderate calculation of the BPS partition function (using field theory

approaches), and also on the issue of finding the most general BPS BH in M-theory.

It is interesting to compare the above results with the D3-brane case. In fact, we did

a similar analysis in [9], where we calculated the Euclidean action for BPS BHs in AdS5.

These BHs also preserve only two supercharges. We obtained the same overall picture

as the M2/M5 cases, with first order phase transitions corresponding to small/big BPS

BHs in AdS5. In this case the known BHs also are equipped with an extra constraint

over the BPS relation that once more is exactly the same constraint that appears in the

definition of the corresponding supersymmetric index calculated in [5]. Unfortunately the

D3-brane case does not brings any deeper insight into the nature of this constraint, but

certainly reinforces its importance, since suggest a kind of universal behavior shared by

all the BPS BHs in AdS that are dual to SCFT. At a speculative level, somehow the

SCFT BPS partition function preserving only two supercharges, to be well defined seems

to need the extra constraint characteristic of the Witten index. Further research is needed

to understand the above relation between BPS BHs, The SCFT BPS partition function

and the associated supersymmetric Index.

One interesting application on the above relation was studied in [21], where SCFT in-

formation regarding the extra-constraint, was used to treat the problem of ”BH uniqueness

in 5D gauge supergravity”.
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